Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Rev. bras. parasitol. vet ; 28(3): 339-345, July-Sept. 2019.
Article in English | LILACS | ID: biblio-1042513

ABSTRACT

Abstract Gastrointestinal nematode infection is an important cause of high economic losses in livestock production. Nematode control based on a synthetic chemical approach is considered unsustainable due to the increasing incidence of anthelmintic resistance. Control alternatives such as the use of natural products are therefore becoming relevant from an environmental and economic point of view. Proteins are macromolecules with various properties that can be obtained from a wide range of organisms, including plants and fungi. Proteins belonging to different classes have shown great potential for the control of nematodes. The action of proteins can occur at specific stages of the nematode life cycle, depending on the composition of the external layers of the nematode body and the active site of the protein. Advances in biotechnology have resulted in the emergence of numerous protein and peptide therapeutics; however, few have been discussed with a focus on the control of animal nematodes. Here, we discuss the use of exogenous proteins and peptides in the control of gastrointestinal.


Resumo A infecção por nematoides gastrintestinais é uma importante causa de grandes perdas econômicas na pecuária. O controle de nematoides com compostos químicos sintéticos é considerado insustentável devido ao aumento da resistência anti-helmíntica. Alternativas de controle, como o uso de produtos naturais, estão se tornando relevantes do ponto de vista ambiental e econômico. As proteínas são macromoléculas com várias propriedades que podem ser obtidas de uma ampla gama de organismos, incluindo plantas e fungos. Proteínas pertencentes a diferentes classes têm mostrado grande potencial para o controle de nematoides. A ação das proteínas pode ocorrer em estágios específicos do ciclo de vida do nematoide, dependendo da composição das camadas externas do parasito e do sítio ativo da proteína. Avanços na biotecnologia resultaram no surgimento de numerosas terapias de proteínas e peptídeos; no entanto, pouco foi discutido com foco no controle de nematoides parasitos de animais. Na presente revisão foi discutido o uso de proteínas exógenas e peptídeos no controle de nematoides gastrintestinais, os mecanismos sugeridos de ação, e os desafios e perspectivas para o uso dessas biomoléculas como uma classe de anti-helmínticos.


Subject(s)
Animals , Peptides/isolation & purification , Plant Proteins/isolation & purification , Fungal Proteins/isolation & purification , Gastrointestinal Diseases/veterinary , Nematode Infections/veterinary , Antinematodal Agents/isolation & purification , Peptide Hydrolases/administration & dosage , Peptide Hydrolases/isolation & purification , Peptides/administration & dosage , Plant Proteins/administration & dosage , Biotechnology , Fungal Proteins/administration & dosage , Chitinases/administration & dosage , Chitinases/isolation & purification , Gastrointestinal Diseases/parasitology , Nematode Infections/drug therapy , Antinematodal Agents/administration & dosage
2.
Braz. j. microbiol ; 49(2): 414-421, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-889234

ABSTRACT

Abstract Agricultural crops suffer many diseases, including fungal and bacterial infections, causing significant yield losses. The identification and characterisation of pathogenesis-related protein genes, such as chitinases, can lead to reduction in pathogen growth, thereby increasing tolerance against fungal pathogens. In the present study, the chitinase I gene was isolated from the genomic DNA of Barley (Hordeum vulgare L.) cultivar, Haider-93. The isolated DNA was used as template for the amplification of the ∼935 bp full-length chitinase I gene. Based on the sequence of the amplified gene fragment, class I barley chitinase shares 93% amino acid sequence homology with class II wheat chitinase. Interestingly, barley class I chitinase and class II chitinase do not share sequence homology. Furthermore, the amplified fragment was expressed in Escherichia coli Rosetta strain under the control of T7 promoter in pET 30a vector. Recombinant chitinase protein of 35 kDa exhibited highest expression at 0.5 mM concentration of IPTG. Expressed recombinant protein of 35 kDa was purified to homogeneity with affinity chromatography. Following purification, a Western blot assay for recombinant chitinase protein measuring 35 kDa was developed with His-tag specific antibodies. The purified recombinant chitinase protein was demonstrated to inhibit significantly the important phytopathogenic fungi Alternaria solani, Fusarium spp, Rhizoctonia solani and Verticillium dahliae compared to the control at concentrations of 80 µg and 200 µg.


Subject(s)
Antifungal Agents/pharmacology , Chitinases/pharmacology , Hordeum/enzymology , Recombinant Proteins/metabolism , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Blotting, Western , Chitinases/chemistry , Chitinases/genetics , Chitinases/isolation & purification , Chromatography, Affinity , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hordeum/genetics , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sequence Homology, Amino Acid
3.
Indian J Exp Biol ; 2014 Nov; 52(11): 1138-1146
Article in English | IMSEAR | ID: sea-153804

ABSTRACT

Realization of hazardious effects of chemical fungicides has led to an interest in the usage of biocontrol agents. The present study, therefore, evaluates the biocontrol efficacy of Western Ghats (India) soil bacterial isolates. A potential strain NII 1006 was evaluated for its antagonistic property against a diverse range of moulds and yeasts. The strain was characterized morphologically, biochemically and molecularly, which revealed the isolate belonged to Streptomyces genus. Organic solvent extracts of NII 1006 culture filtrates inhibited the growth of the test pathogens indicating that growth suppression was due to extracellular anti-fungal metabolites present in the culture filtrates. The strain produced extracellular chitinase enzyme in addition to some stable partially purified anti-fungal compounds. Morphological changes such as hyphae degradation into debris and abnormal shapes were observed in test fungi and yeast grown on potato dextrose broth that contained the NII 1006 culture filtrate. The cell free supernatant has a tolerance to wide range of pH, temperature and enzymes such as lipase and protease. The biocontrol potential of NII 1006 strain may be correlated significantly with their ability to produce antibiotics as well as extracellular hydrolytic enzymes particularly chitinolytic enzyme.


Subject(s)
Acetates , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Carbon/metabolism , Chitinases/isolation & purification , Chitinases/pharmacology , Chloroform , Culture Media, Conditioned/pharmacology , Drug Evaluation, Preclinical , Fungi/drug effects , Glucans/metabolism , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/pharmacology , Hexanes , Hydrogen-Ion Concentration , Hyphae/drug effects , India , Nitrogen/metabolism , Plant Extracts/pharmacology , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Soil Microbiology , Solvents , Streptomyces/chemistry , Streptomyces/enzymology , Streptomyces/isolation & purification , Yeasts/drug effects
4.
Indian J Exp Biol ; 2014 Nov; 52(11): 1025-1035
Article in English | IMSEAR | ID: sea-153782

ABSTRACT

After cellulose, chitin is the second most abundant organic and renewable polysaccharide in nature. This polymer is degraded by enzymes called chitinases which are a part of the glycoside hydrolase family. Chitinases have many important biophysiological functions and immense potential applications especially in control of phytopathogens, production of chito-oligosaccharides with numerous uses and in treatment and degradation of chitinous biowaste. At present many microbial sources are being explored and tapped for chitinase production which includes potential fungal cultures. With advancement in molecular biology and gene cloning techniques, research on fungal chitinases have made fast progress. The present review focuses on recent advances in fungal chitinases, containing a short introduction to types of chitinases, their fermentative production, purification and characterization and molecular cloning and expression.


Subject(s)
Chitin/metabolism , Chitinases/classification , Chitinases/genetics , Chitinases/isolation & purification , Chitinases/metabolism , Cloning, Molecular , Fermentation , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Fungi/enzymology , Fungi/growth & development , Industrial Microbiology/methods , Mycology/methods
5.
Braz. j. microbiol ; 43(1): 177-186, Jan.-Mar. 2012. ilus, tab
Article in English | LILACS | ID: lil-622802

ABSTRACT

The present study reports statistical medial optimization for chitinase production by a novel bacterial strain isolated from soil recently, which the name Chitinolyticbacter meiyuanensis SYBC-H1 is proposed. A sequential statistical methodology comprising of Plackett-Burman and response surface methodology (RSM) was applied to enhance the fermentative production of chitinase, in which inulin was firstly used as an effective carbon source. As a result, maximum chitinase activity of 5.17 U/mL was obtained in the optimized medium, which was 15.5-fold higher than that in the basal medium. The triplicate verification experiments were performed under the optimized nutrients levels which indicated that it well agreed with the predicted value.


Subject(s)
Carbon/analysis , Fermentation , Inulin/isolation & purification , Chitinases/analysis , Chitinases/isolation & purification , Data Interpretation, Statistical , Enzyme Activation , Methodology as a Subject , Process Optimization , Methods
6.
Braz. j. microbiol ; 39(2): 314-320, Apr.-June 2008. ilus, tab
Article in English | LILACS | ID: lil-487711

ABSTRACT

Entomopathogenic fungus Verticillium lecanii is a promising whitefly and aphid control agent. Chitinases secreted by this insect pathogen have considerable importance in the biological control of some insect pests. An endochitinase gene Vlchit1 from the fungus was cloned and overexpressed in Escherichia coli. The Vlchit1 gene not only contains an open reading frame (ORF) which encodes a protein of 423 amino acids (aa), but also is interrupted by three short introns. A homology modelling of Vlchit1 protein showed that the chitinase Vlchit1 has a (α/β)8 TIM barrel structure. Overexpression test and Enzymatic activity assay indicated that the Vlchit1 is a functional enzyme that can hydrolyze the chitin substrate, so the Vlchit1 gene can service as a useful gene source for genetic manipulation leading to strain improvement of entomopathogenic fungi or constructing new transgenic plants with resistance to various fungal and insects pests.


O fungo entomopatogênico Verticillium lecanii é um agente promissor no controle da mosca-branca e do pulgão. As quitinases secretadas por esse patógeno de insetos têm uma grande importância no controle biológico de doenças causadas por insetos. Um gene de endoquitinase Vlchit1 desse fungo foi clonado e expresso em Escherichia coli. O gene Vlchit contém não apenas um ORF que codifica uma proteína de 423 aminoácidos, mas também é interrompido por três pequenos introns. A modelagem de homologia da proteína Vlchit1indicou que a quitinase Vlchit1 tem uma estrutura (α/β) 8 TIM barrel. Testes de expressão e de atividade enzimática indicaram que Vlchit1 é uma enzima funcional que hidroliza quitina, portanto o gene Vlchit pode ser um gene útil para manipulação genética para melhoramento de cepas de fungos entomopatogênicos ou para a construção de novas plantas transgênicas com resistência a várias doenças causadas por fungos e insetos.


Subject(s)
Cloning, Molecular/methods , Environmental Microbiology , In Vitro Techniques , Insect Vectors/pathogenicity , Pest Control, Biological , Chitinases/analysis , Chitinases/isolation & purification , Verticillium/genetics , Verticillium/isolation & purification , Clinical Enzyme Tests , Gene Expression , Virulence
7.
Indian J Exp Biol ; 1996 Jun; 34(6): 594-6
Article in English | IMSEAR | ID: sea-59218

ABSTRACT

Chickpea genomic library constructed earlier in phage lambda (EMBL-3) was screened for the presence of chitinase clone using tobacco chitinase cDNA as a probe. Positive clones obtained by primary screening of plaques (2 x 10(6)) were ascertained by secondary and tertiary screening. Presence of chitinase insert in the positive clones obtained, was further confirmed by restricting phage DNA with Sal I and then doing southern with tobacco chitinase. The insert band was eluted out and subcloned in puc 19 plasmid.


Subject(s)
Chitinases/isolation & purification , Cloning, Molecular , Fabaceae/enzymology , Genome, Plant , Genomic Library , Plants, Medicinal
8.
Bulletin of the Faculty of Science-University of Alexandria. 1992; 32[A]: 204-215
in English | IMEMR | ID: emr-23310

ABSTRACT

The crude chitinase preparation obtained from Bacillus amloliquefaciens cultures was partially purified by fractional precipitation with ethanol, acetone or ammonium sulphate. The 65% ammonium sulphate fraction was the most active and was further purified by gel filtration on Sephadex G-200 followed by ion exchange chromatography on Ecteola ET-11 cellulose yielding 4 chitinolytic enzyme components. Two enzyme components, CHII and CHIII, showed high activity and protein recovery. The purity of both enzymes was checked by polyacrylamide gel electrophoresis. CHII enzyme was more specifid for chitin as substrate and showed a higher thermostability than CHIII. Both enzymes showed a temperature optimum of 45°C and pH optimum of 5.5 to 5.9. They did not show specific cationic requirements and were partially inhibited by zinc, cupric, silver and cobalt ions. Their amino acid compositions were different. SDS electrophoresis revealed that each enzyme was formed of 2 subunits of different molecular weights, CHII subunit had a M.W. of 26.5 and 23.5 KD while CHIII was 31.6 and 27.5 KD


Subject(s)
Chitinases/isolation & purification , Bacillus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL